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8.1 Introduction

Internal dosimetry may be divided into two main problems: 1) the forward (scientiÞc) prob-
lem of determining biokinetic models that describe how radionuclides are taken into the
body, distributed in body tissues, and excreted, and 2) the inverse (mathematical) problem:
given agreed-upon biokinetic models and the measured amounts in excreta, to determine the
times and amounts of intakes into the body.
The forward problem has received a large amount of attention (including the other chap-

ters of this book) and standard biokinetic models are now available for most nuclides (e.g.,
ICRP publications 30, 54, 66, and 78). The inverse problem has received little attention
within the health physics community. The inverse problem requires forward model calcula-
tions. An important step forward in this area is the IMBA suite of programs described in the
next chapter.(Birchall et al. 1998) These programs will provide working internal dosimetrists
with a user friendly means of performing forward calculations (as well as Þtting bioassay data)
and, in phase II, convenient access to the Bayesian method for the inverse problem described
here.
A typical problem confronting an internal dosimetrist is the interpretation of routine

bioassay monitoring data where times of possible intakes are not known. Often individual
cases are laboriously treated on a case-by-case basis, using �professional judgment� to decide
when and if multiple intakes may have occurred. Or, automated methods are used that
assume each new measurement is associated with a new intake occurring midway in time
between the new measurement and the last measurement. These types of data unfolding
procedures(Lawrence 1962)(Ward & Eckerman 1992) often overÞt the data resulting in intake
scenarios that are strongly ßuctuating, including negative values. Also, there is not always
proper statistical weighting of data; all data points are sometimes treated equally regardless
of their uncertainty estimates. A Bayesian unfolding scheme(Miller et al. 1999) remedies
some of these problems but does not properly treat the determination of multiple intakes.
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The inverse problem of internal dosimetry is, in fact, a generic problem widely studied
in other Þelds (for example in image reconstruction, spectral deconvolution, and model pa-
rameter Þtting). Miller and Inkret have described a code for plutonium internal dosimetry
(Miller & Inkret 1996) using the maximum entropy method (Skilling 1989), a widely used
method for underdetermined inverse problems with a positivity constraint. The new code
offers some substantial advantages: it ensures positive intakes and doses, it smooths out
ßuctuating data, and it provides an estimate of the propagated uncertainty in the calculated
intakes or doses. However, 1) because the code does not allow the use of a realistic prior (the
prior must be the entropy function) and 2) the code does not calculate posterior probability
distributions (only Þnding the maximums of the posterior probability), we do not believe it
to be satisfactory.
One of the main disadvantages of Bayesian approach has been the lack of guidance in

the choice of the prior probability distribution, which is always necessary in the Bayesian
statistics. The Bayesian health physicist is allowed to choose the prior probability distribu-
tion subjectively. We prefer, however, to determine the prior from relevant data whenever
possible. The prior probability distribution has a small effect on the inferred result when a
large amount of measurement data are available. In the opposite case, which is not unknown
in health physics, the prior can inßuence the inference in an important way.
In (Miller et al. 2001) some theoretical concepts and historical data from tritium and

plutonium internal dosimetry at Los Alamos were used to arrive at suitable, simple models
for the prior probability distribution. Two models for the prior probability distribution
were proposed: 1) the log-normal distribution, when there is some additional information to
determine the scale of the true result, and 2) the �alpha� distribution (a simpliÞed variant
of the gamma distribution) when there is not.
At the practical level for internal dosimetry, these new models for the prior probability

distribution have been incorporated into our Bayesian internal dosimetry codes. In order to
carry out a Bayesian analysis of bioassay data using the new models for the prior probability
distribution, the internal dosimetrist need only choose the value of a single parameter. When
the worker has been involved in an incident or incidents, the prior parameter characterizes
the additional information on the possible magnitude of the intake (for example, nose swabs
or air monitor readings). When no incidents have occurred, the prior parameter reßects the
population average of the number of intakes (in a certain range of magnitude) that occur per
unit time. From Los Alamos plutonium data in recent years, this number (the parameter α)
is about 1 �intake� per 1000 workers per year or even less.
The inverse problem of internal dosimetry is to use the bioassay measurements and a set

of agreed-upon biokinetic models to infer if and when intakes may have occurred and the
magnitude of the resultant radiation dose to the worker. This problem is naturally posed as
a problem of Bayesian inference. The Markov Chain Monte Carlo (MCMC) method (Miller
et al. 2002a, Gilks et al. 1996) provides an exact solution of the Bayesian inference problem
without simplifying assumptions. In this chapter three plutonium internal dosimetry cases
are analyzed using the MCMC code ID1.1 and described in some detail.
Many health physics measurements involve counting, usually in conjunction with a back-

ground count, which is subtracted in some way. The likelihood function in these cases involves
Poisson distributions (for long decay times). Optional use of exact likelihood functions in
our Bayesian internal dosimetry codes has been implemented using an interpolation-table
approach.(Miller et al. 2002b) This means that the exact likelihood functions can be used
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with no computation time penalty except for the initial setup of the interpolation tables.
In cases with only a few measurements involving low-level counts, we Þnd that sometimes

signiÞcant errors are made using the Gaussian approximation rather than the exact likelihood
function. One such case will be discussed in this chapter.
An introductory discussion of the use of Bayesian methods for internal dosimetry is con-

tained in a recent review paper (Miller et al. 2000).

8.2 Statistical Inference

The forward problem of mathematical modeling consists of calculating quantities of interest
from a model that is thought to represent the physical system of interest, given values of
the set of parameters of the model. Biokinetic models are examples of such models. Present
biokinetic models are quite simple in one sense, in that they are linear, so that they may be
summarized for all intake values by interpolation tables. The actual calculation of present
biokinetic models is somewhat complex, involving the simultaneous solution of a fairly large
number of ordinary linear differential equations. This system of equations usually, but not
always, has constant coefficients, allowing the use of linear algebra solution techniques.
The inference problem is to determine �best� values of the parameters from the measure-

ment data, using agreed-upon forward models. This type of generic problem is extremely
common and there are several well known techniques, for example χ2 minimization or max-
imum likelihood. In recent years the Bayesian method has begun to replace these older
methods, because of its more appealing conceptual basis and because the computational
power needed is now becoming readily available.
The Bayesian method is quite simple and elegant to formulate. Letting X denote the data

(a multidimensional vector quantity), and ξ denote the parameters (another vector quantity,
usually with higher dimensionality than the data), the inference problem is to determine
P (ξ|X), read as the probability of parameters ξ given the measurements X (for continuous
variables, P (.|X) is a probability distribution function rather than a discrete probability).
Rather than seeking to determine a single �best� value of the parameters, we recognize from
the outset that there are considerable uncertainties involved and the probability distribution
of the parameters is the quantity of interest. The probability distribution of the parameter
values given the measurements may be such that it can be summarized by a central value
(average, median) and a width estimate (standard deviation, credible limits), or it may be
too complex to simply characterize (long tail, bimodal). The crucial conceptional step is to
accept that the inferred parameters are random variables.
The rest follows from logic and mathematics and is the famous and controversial Bayes

theorem:
P (ξ|X) ∝ P (X|ξ)P (ξ). (1)

The proportionality means that a normalization factor independent of ξ is needed.
In Eq. 1 P (X|ξ) is the probability of measurements X given the parameters ξ. This is

the probability distribution that is usually studied and thought about in connection with a
measurement. For example, the parameter might be the (unknown) true mean number µ
of counts in a counting measurement system and the data the actual number N of counts
observed, which follows the Poisson distribution

P (N |µ) = µNe−µ

N !
.

3



1993.0 1993.2 1993.4 1993.6 1993.8 1994.0

0

1

2

3

4

5

U
rin

e 
ex

cr
et

io
n 

(m
Bq

 d
-1

)

Year

 data +- 1SD

Figure 1: Test 239Pu urine data.

Considered as a function of ξ, P (X|ξ) is called the likelihood function. That it appears
in Eq. 1 seems quite reasonable. The other quantity on the right hand side of Eq. 1 is more
contentious. It is called the prior probability distribution. We prefer to think of the prior
in entirely objective terms as the probability distribution of ξ in the measured population.
This is illustrated later on in this chapter for an example involving background counting
rates.
Equation 1 is the solution of the inference problem. All that is needed is to integrate over

subsidiary variables to display the probability distribution of the quantities of interest. For
example, consider an internal dosimetry problem with 40 possible intakes where there are
120 parameters (the time, amount, and type of each intake). We may wish to examine the
distribution of total CEDE for all intakes summed together, so it is necessary to integrate
out (marginalize) the detailed probability distribution function given by Eq. 1 with respect
to the other variables. This integration is performed using the MCMC method.

8.3 Case I-Code validation

This case involves simulated 239Pu urine excretion data, calculated using an assumed intake
amount (370 Bq), a biokinetic type (ICRP-30 class Y, 1 µm AMAD), and date of intake
(28- February-1993). These data are shown in Fig. 1. The data are assumed to have rather
small measurement uncertainties (the 1 SD uncertainty error bars are too small to be visible
in Fig. 1), roughly corresponding to the measurement uncertainty obtained using Thermal
Ionization Mass Spectrometry (TIMS (Inkret et al. 1998)). A multiplicative uncertainty SD
of 0.3 is also assumed. This would correspond to the biological/sample collection uncertainty
for simulated 24-hr urine samples normalized using sample volume and speciÞc gravity. The
code assumes an intake in each of the intervals between bioassay data points (9 intakes).
The multivariate posterior distribution of amount, time, and biokinetic type for each intake
given by Bayes theorem is integrated using the MCMC technique.(Miller et al. 2002a)
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Figure 2: Test 239Pu urine data and calculated (posterior average) intake amounts.

In Fig. 2 are shown the bioassay data together with the average value of the calculated
intakes (in terms of CEDE) and intake times. There is only one signiÞcant calculated intake.
The posterior distribution of intake dates for the signiÞcant intake is shown in Fig. 3, where
fractional time corresponds to the 2-month interval between the Þrst and second bioassay
data points. The date distribution correctly peaks at 28-February-1993.
The posterior distribution of biokinetic types is shown in Fig. 4. The �universe� of possible

biokinetic types is shown in Fig. 4, using the following labeling scheme. The Þrst character
�I� stands for inhalation. The second character is either 1) �Y�, for ICRP-30 class Y, or 2)
�W� for class W. The third character denotes one of three particle sizes, 1) �S� for small (0.2
µm AMAD), 2) �M� for medium (1 µm AMAD), and 3) �L� for large (5 µm AMAD). As
seen, by far the most probable biokinetic type is IYM, inhalation of class Y medium particle
size, which is the correct result.
Figure 5 shows the calculated distribution of intake amount in terms of CEDE. The correct

result is 28.7 mSv, very close to the median value of the cumulative probability distribution.
There are two curves overplotted in Fig. 5: 1) the initial parameter values of the Markov
Chain chosen to be the minimum possible values, and 2) the initial parameter values chosen
to be the maximum possible values with a different value of the random number seed. The
fact that the two curves agree is taken as an empirical measure of convergence, that is, that
an adequate number of chain iterations have been calculated.
The Bayesian formalism allows us to consider any function of the parameters. Any such

function will have a posterior statistical distribution. A natural quantity of interest is the
calculated urine excretion at the times of the bioassay measurements. Fig. 6 shows measured
data together with the average (or expectation) value of the calculated excretion.
One of the primary features of the Bayesian method is that it allows the calculation of the

probability distribution of quantities of interest, given the measurements. Such a posterior
distribution of CEDE of the Þrst intake was shown in Fig. 5. Other methods of displaying
this information may be helpful. Figure 7 shows the average value of CEDE for all the
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Figure 3: Posterior distribution of time of intake for the large calculated intake using 239Pu test urine data.
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Figure 4: Posterior distribution of biokinetic type for the large calculated intake using 239Pu test urine data.
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Figure 5: Cumulative posterior distribution of intake amount for the large calculated intake using 239Pu test
urine data.
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Figure 6: Average of the posterior distribution of calculated urine excretion for the large calculated intake
using 239Pu test urine data.
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Figure 7: Average values and 5% and 95% credible limits of calculated CEDE for all intakes using 239Pu
test urine data.

intakes along with shaded bars representing the 5% and 95% credible limits for those cases
where the upper credible limit exceeds 1 mSv. There may be cases where the average value
exceeds the upper credible limit (when the distribution is narrowly peaked at 0, but with
a long tail). Figure 8 shows a shaded contour plot of the posterior distribution of CEDE
for intake 1. This type of representation may be more intuitive than others that require an
understanding of X-Y plots.
The accurate and precise data assumed for this test case allows the calculation to correctly

select the biokinetic type. Thus if we run the calculation assuming only one biokinetic type,
�IYM� (the correct one), we obtain in Fig. 9 essentially the same result as shown in Fig. 5.
This is not usually the case as will be discussed later on. By using the very same calculated

data (central values) with larger assumed uncertainties we can illustrate the importance
of measurement precision in obtaining accurate internal dose assessments. The assumed
measurement uncertainty is now increased by an order of magnitude (roughly corresponding
to the measurement uncertainty of Radiochemical Alpha Spectrometry-RAS). These data
are shown in Fig. 10. In the case of larger measurement uncertainty, the correct biokinetic
type is no longer singled out by the data as shown in Fig. 11. The data over the 8-month
collection time span are not precise enough to distinguish class Y from class W behavior. As
a consequence the posterior distribution of CEDE from the Þrst intake now extends down
to the smaller doses obtained if class W is assumed as shown in Fig. 12.
In Fig. 12 one can see a typical example of incomplete convergence. Our interpretation

of such a plot is that the correct result is probably somewhere between the two cases shown.
To remedy the convergence problem the code would be run for a larger number of iterations,
if this is feasible.
Figure 13 shows that the breadth of the posterior distribution of CEDE is indeed caused

by the uncertainty of biokinetic type. If only one biokinetic type is allowed, the distribution
is again very narrow, just as in the case of small measurement uncertainties.
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Figure 8: Shaded contour plot of the posterior distribution of CEDE for the large intake calculated using
239Pu test urine data.

1 10 100 1000

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty
(C

ED
E<

C
ED

E 1)

CEDE1(mSv)

 6 biokinetic types
 1 biokinetic type

Figure 9: Cumulative posterior distribution of intake amount of the first intake using 239Pu test urine data,
calculated assuming 6 possible biokinetic types and only 1 biokinetic type.
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Figure 10: Test 239Pu urine data with larger assumed measurement uncertainties.
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Figure 11: Posterior distribution of biokinetic type calculated using test 239Pu urine data with larger assumed
measurement uncertainties.
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Figure 12: Cumulative posterior distribution of intake amount for the first intake calculated using 239Pu test
urine data with larger assumed measurement uncertainties.
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Figure 13: Cumulative posterior distribution of intake amount of the first intake using 239Pu test urine data
with larger assumed measurement uncertainties, calculated assuming 6 possible biokinetic types and only 1
biokinetic type.
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Figure 14: Comparison of shaded contour plots of the posterior distribution of CEDE for the large and small
uncertainty cases using 239Pu test urine data.

Finally in Fig. 14 we compare the uncertainty of the calculated CEDE in the two cases of
�small� and �large� measurement uncertainty. Even though the simulated data in both of
these cases is very high quality by the usual standards of internal dosimetry, the uncertainty
of the calculated CEDE is quite signiÞcant in both cases.
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Figure 15: 239Pu urine data for an actual Los Alamos case.

8.4 Case II-overexposure detected from routine urine monitoring

This case involves actual 239Pu urine excretion data from Los Alamos. This event was
termed an overexposure since the calculated CEDE was greater than 50 mSv. A worker
had an intake of 239Pu not associated with workplace indications of a release (for example,
elevated air monitor readings, external contamination). This type of non-incident-related
intake is extremely rare, and the Bayesian method is very important in such situations to
avoid an inordinate number of false positives. The prior probability distribution used to
interpret non-incident bioassay plutonium data at Los Alamos is based on studies of a large
number of such cases, which shows that the probability of a true intake is less than 1 in 1000
per year.(Miller et al. 2001)
The dataset is particularly interesting in that TIMS measurements were taken along with

RAS measurements. A question of interest is whether this intake would have been detected
using just the Þrst elevated RAS data point, and how the calculated posterior probability
from the Þrst RAS data point compares with result after 4 TIMS measurements. Note that a
single TIMS measurement that is 10 times more sensitive than a single RAS measurement is
equivalent to 100 RAS measurements. Since TIMS sensitivity exceeds RAS by more than an
order of magnitude, the urine excretion pattern should be considered very well characterized
with the TIMS data.
Figure 15 shows the urine excretion data. Some of the data points are RAS measurements

and others represent the properly weighted average of an RAS measurement and a TIMS
measurement.
In Fig. 16 are shown the calculated intakes corresponding to this data. There is only one

signiÞcant intake. The lower plot shows the average time of each intake and the average
amount in terms of CEDE.
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Figure 16: 239Pu urine data and calculated (posterior average) intake amounts.

14



1 10 100 1000

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y(
C

ED
E<

C
ED

E 1)

CEDE1(mSv)

 MCMC run 1
 MCMC run 2

Figure 17: Cumulative posterior distribution of CEDE associated with the large intake calculated from 239Pu
urine data.

Figure 17 is a plot of the cumulative posterior probability of the CEDE associated with
the single signiÞcant intake. Figures 18 and 19 plot the uncertainty of this CEDE in ways
that may be easier to understand. In Fig. 19 we have added a reference line corresponding
to natural background radiation. This might help the worker understand the magnitude of
his or her intake.
Unlike the code validation case I, we do not know the �correct� answer in this case;

however, with the TIMS measurements we have a quite accurate result. We now consider
what MCMC calculates with just the RAS data, in particular with only the Þrst elevated
RAS result. The RAS measurement results are shown in Fig. 20. The RAS count data are
shown in Table 1. In Table 1, α and β are parameters of the prior probability distribution of

Table 1: RAS count data.

sample date gross counts background counts∗ tb/t
� (α− 1)tb/β

� β/tb

19-Aug-1998 2 1 6 3.64 1.92
15-Dec-1998 15 2 6 3.64 1.92
19-May-1999 9 2 6 3.64 1.92
22-Sep-1999 12 2 6 3.64 1.92
7-Nov-1999 3 0 6 3.64 1.92
∗ in counting period tb
� ratio of background counting period to gross counting period
� most probable number of background counts in count period tb from prior

background count rate determined using population data.(Miller et al. 2002b) The parameter
(α − 1)tb/β is the most probable number of background counts in counting period tb and
β/tb is a measure of the width of the prior probability distribution of background count
rate, values greater than 1 corresponding to a narrow distribution. These parameters are
discussed in detail in (Miller et al. 2002b) and will be discussed later on here.
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Figure 18: Average values and 5% and 95% credible limits of calculated CEDE for all intakes calculated
from 239Pu urine data.
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Figure 19: Shaded contour plot of the posterior distribution of CEDE for the large intake calculated for
LANL 239Pu case.
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Figure 20: 239Pu urine data using only RAS count measurements.

Figure 21 shows the posterior probability of CEDE based on the Þrst elevated RAS
measurement calculated in two different ways: 1) using the exact Poisson likelihood function,
and 2) using the Gaussian approximation.(Miller et al. 2002b) It is clear that the Gaussian
approximation leads to a considerably different result than the exact Poisson likelihood.
The exact likelihood calculation involves a Bayesian calculation of the true background

count rate. Although not very important numerically, this part of the problem is a nice illus-
tration of the Bayesian method. As in any Bayesian estimation problem, a prior probability
distribution is needed. The best way to come up with a prior is to use data. Such data
for background count rate are shown in Fig. 22, which shows the distribution of observed
background counts for a large number of similar measurements.
The background count distribution is Þt by assuming an underlying distribution of true

background count rate and using the known Poisson distribution of measured counts, given
the true count rate. The Þt parameters are the parameters α and β of the Gamma distri-
bution shown in Fig. 23. For conservatism, the parameter β is not allowed to be too large
(larger than 2tb) as this implies a very narrow prior distribution. The prior parameters used
are shown in Table 1. For example, for the 15-December-1998 measurement there were 15
gross counts and 2 background counts. The 2 background counts are interpreted in light
of the Þtted Gamma prior distribution of true background count rate, which peaks at 3.64
counts. So the measured 2 counts are effectively pulled up somewhat toward the peak of the
prior.
Figure 24 shows the effect of adding a second RAS measurement in narrowing the poste-

rior distribution of CEDE. Figure 24 also adds the �Þnal� result obtained using the TIMS
measurements.
In Fig. 25 is shown the progression of knowledge of the true CEDE from the Þrst RAS

measurement to the full dataset. The probability distributions are as we would hope them
to be. The range of the initial estimate encompasses that of the Þnal estimate.
A dataset limited in time span such as this one cannot hope to distinguish the biokinetic
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Figure 21: Cumulative posterior distribution of CEDE for LANL 239Pu case calculated from the first elevated
RAS data point using the exact Poisson likelihood and the Gaussian approximation.
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Figure 22: Histogram of the frequency distribution of background counts (in counting period tb) for a large
collection of similar cases, together with a fit.
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Figure 24: Cumulative posterior distribution of CEDE calculated using 1) the first, 2) the first and second
RAS data points, and 3) all data (RAS and TIMS) for LANL 239Pu case.
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Figure 25: Progression of knowledge of CEDE from first RAS measurement to full data set (4 RAS and
TIMS measurements) for LANL 239Pu case.

type from the excretion pattern. This is shown in Fig. 26, which shows that many biokinetic
types are consistent with the excretion pattern of the data.
Also of great practical interest in a case like this is determining the date of intake, in

order to try to understand how the release occurred. As Fig. 27 shows, the date of intake
is not determined, except that intakes immediately preceding the Þrst elevated urine sample
seem less likely.
The Bayesian method works with any agreed-upon set of biokinetic models deÞning the

�universe� of possible biokinetic responses. The effect of using the ICRP-60 family of bioki-
netic models rather than ICRP-30 models is shown in Fig. 28. As is typical for plutonium
internal dosimetry based on urine bioassay, the new models give a CEDE about a factor of 2
less than the old. In this case the CEDE calculated using the ICRP-60 family of biokinetic
models no longer exceeds the regulatory limit of 50 mSv. It might be reasonable in some
cases to do calculations with a mix of different families of models in order to estimate the
uncertainties related to lack of understanding of the biokinetics.
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Figure 26: Posterior distribution of biokinetic type for LANL 239Pu case.
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Figure 27: Posterior distribution of intake time (in the time period 19-August-1998 to 15-December-1998)
for LANL 239Pu case.
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Figure 28: Comparison of CEDE results using ICRP-30 and ICRP-60+ biokinetic models for LANL 239Pu
case.
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Figure 29: Urine bioassay data for a Los Alamos 238Pu case.

8.5 Case III-Multiple Intakes?

This case involves actual 238Pu urine bioassay data from Los Alamos. The data are shown in
Fig. 29. The dataset is typical of the quality of bioassay data actually encountered in practice.
For example, the two low data points occurring around 1986 seem obviously erroneous.
This person was involved in an off-normal event (incident) on 30-October-1980 involving

moderate-level workplace indicators (sudden release of 238Pu when a plastic bag containing
contaminated trash ruptured causing an air monitor alarm ≈ 60,000 dpm m−3, 368/651 dpm
nose swipes). Whenever incident information is available, it is incorporated into the prior
probability.(Miller et al. 2001) Incidents are categorized into levels of severity and the median
value of a broad lognormal prior is chosen accordingly, based on studies of large numbers of
similar cases. The MCMC intake scenario calculated for this case, making use of incident
information, is shown in Fig. 30. There is only one intake with an appreciable average CEDE,
the one associated with the incident. Figure 31 shows the credible limits for each intake in
addition to the average value. Two other intakes may have had appreciable CEDEs, but this
is uncertain. The average calculated value of the urine excretion is displayed in Fig. 32.
The dominant intake has the distribution of biokinetic types shown in Fig. 33. The most

probable biokinetic type is the delayed onset 238Pu biokinetic behavior identiÞed in the so-
called �wing-9� accident that occurred at Los Alamos in 1971.(Hickman et al. 1995, Miller
et al. 1999) For 238Pu, the set of allowed biokinetic types includes this one (denoted IEE
for inhalation and the initials of one of the people involved in the 1971 incident) in addition
to the standard ICRP-30 types. Delayed-onset biokinetic response is usually misinterpreted
using unfolding numerical algorithms (see for example the reconstruction given for this case
in (Miller 2000)). In simple cases the Þt �by-eye� method might come up with the MCMC-
calculated intake scenario, although this is not necessarily likely.
For this case it is interesting to also interpret the data as if the incident information were

not available. The MCMC calculated intake scenario, using the standard non-incident prior,
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Figure 30: 238Pu urine data and calculated (posterior average) intake amounts.
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Figure 31: Average values and 5% and 95% credible limits of calculated CEDE for all intakes for LANL
238Pu case.
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Figure 32: Average of the posterior distribution of calculated urine excretion for the LANL 238Pu case.
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Figure 33: Posterior distribution of biokinetic type for the dominant intake for the LANL 238Pu case.
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Figure 34: 238Pu urine data and calculated (posterior average) intake amounts when incident prior is not
used.

is shown in Fig. 34. The calculated average CEDE clusters around the time of the incident.
Figure 35 shows the calculated intake CEDEs including credible limits.
If instead of a non-incident prior assuming intakes are rare (the intake probability, α, is

normally taken as 1 in 1000 per year for plutonium work at Los Alamos in recent years(Miller
et al. 2001)), we use a non-incident prior with probability of intake 100 times larger (still not
including the incident information), the MCMC interpretation is as shown in Fig. 36. This
choice of prior probability might be termed a chronic rather than acute intake situation. In
Fig. 37 are shown the year-by-year combined intakes (in terms of total CEDE for the year).
One would not describe this situation as a single dominant intake, but many intakes. It is
not possible to rule out signiÞcant intakes over most of the work history. At the same time
it is not possible to say with some certainty that an intake occurred except for the yearly
combined intake in 1980 and 1981 (when the lower credible limits are greater than 0).
The calculated average urine excretion shown in Fig. 38 better matches the urine data

because more intakes (degrees of freedom) are effectively available, because of a prior corre-
sponding to more intakes per unit time.
The computation involved for this case is considerable because of the large number of

intakes. The computation time for a single run on a 1 GHz Pentium workstation is given
approximately by the formula

T = 1.6× 10−9 niterN
2.8
in , (2)

where T is the computation time in minutes, niter is the number of chain iterations per
intake, and Nin the number of assumed intakes. This case involves 45 intakes and requires
about 11 hours of computation time for 107 chain iterations per intake (45×107 in all). Our
rule of thumb is that between 1 and 10 million chain iterations per intake are required for
convergence.
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Figure 35: Average values and 5% and 95% credible limits of calculated CEDE for all intakes for LANL
238Pu case when incident prior is not used.
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Figure 36: Average values and 5% and 95% credible limits of calculated CEDE for all intakes for LANL
238Pu case when incident prior is not used and non incident intake probability (α) is increased by factor of
100.
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Figure 37: Average values and 5% and 95% credible limits of calculated CEDE for intakes combined on a
year-by-year basis for LANL 238Pu case when incident prior is not used and non incident intake probability
(α) is increased by factor of 100.
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Figure 38: Average of the posterior distribution of calculated urine excretion for the LANL 238Pu case when
incident prior is not used and non incident intake probability (α) is increased by factor of 100.
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8.6 Conclusions

Three plutonium internal dosimetry cases involving urine bioassay have been considered, with
a decreasing level of knowledge of the �correct� answer. In the Þrst case, calculated data are
used, so complete knowledge of the correct answer is available. The data set consists of nine
urine bioassay measurements with equal spacing of the logarithm of time post-intake. If the
measurement uncertainty is small enough, the correct date of intake, biokinetic type, and
intake amount is faithfully reproduced. Otherwise, primarily because the excretion pattern
is not determined precisely enough to single out the correct biokinetic type, the calculated
posterior distribution of CEDE is quite broad.
The second case involved actual 239Pu urine data from Los Alamos. A worker, not con-

nected with identiÞed incidents, received an intake over the regulatory limit of 50 mSv. Four
post-intake urine samples were taken and all were analyzed using both RAS and TIMS.
With TIMS data both after and before the intake, the situation is as well characterized as
is practically possible over the limited time span of data collection. Calculations using only
the Þrst post-incident RAS data are compared with calculations using the entire dataset. It
is found that the exact Poisson likelihood function needs to be used in order for the RAS
result to agree with the Þnal result. Using the Gaussian approximation, the Þrst RAS data
point does not alert one to what is coming.
The third case involves actual 238Pu urine data from Los Alamos. This is a realistic

imperfect data set, and the proper interpretation is not readily apparent. Using prior infor-
mation that the person had been involved in an incident, the MCMC calculation shows that
only a single signiÞcant intake occurred, with a delayed-onset biokinetic response. Without
using the incident prior information, several intakes in the same time period as the incident
are calculated. Assuming a much large prior probability of intake (chronic intake situation),
many intakes over the entire work history of the employee are calculated to be possible,
however no individual intake is likely with any certainty. This seems to often be the case,
that individual intakes, or even combined intakes in a year, may have occurred (we cannot
rule them out), but we also cannot say with certainty that they have occurred.
The Markov Chain algorithm provides a deÞnitive solution of the inverse problem of

internal dosimetry, that of calculating the intake scenario given the bioassay data and an
agreed-upon set of biokinetic models. By a deÞnitive solution we mean an exact solution of
the problem without simplifying assumptions.
The Bayesian method allows us to directly address the question of interest (�what is

the dose?�) and to quantify the uncertainties. The quantitative assessment of uncertainty is
based on calculation of the probability distribution of intake parameters given the data. This
is an inherently Bayesian quantity and such an analysis is not possible using non-Bayesian
methods. Not surprisingly, it is simply not possible to identify the times of intakes with
certainty in many cases, although other quantities, such as annual dose or total CEDE are
usually relatively well determined by the data.
The drawback of this method is that it requires a large amount of computer time. Popu-

lation studies involving thousands of cases, such as those carried out to determine the prior
parameter α(Miller et al. 2001) are not practical on a desktop workstation. Our future plans
are to use massively parallel supercomputers to carry out such studies.
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